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A theoretical model was developed for the line shape of magnetic-resonance absorption for
transitions within a non-Kramers doublet (the term doublet is used here to denote the
| AMg| =2 transition within a ground triplet) for the point-group symmetries Cj, and Oj.
This was done for both the acoustical-paramagnetic-resonance and the electron-paramagnetic-

resonance line shapes.

The asymmetric broadening of the absorption distribution is inter-
preted on the basis of the spin-lattice coupling.

For the case of Cy, symmetry, the calcula-

tion was done for both electric-rf-field-induced and magnetic-rf-field-induced transitions, the
necessary condition for the former being a lack of inversion symmetry.

1. INTRODUCTION

Phonon-induced transitions between the states of
a non-Kramers doublet are allowed,! and thus, from
this standpoint, the ncn-Kramers ion impurities in
diamagnetic host lattices are particularly adapted
to study by acoustical-paramagnetic-resonance
(APR) techniques. On the other hand, magnetic
dipole transitions between the states of a non-
Kramers doublet are forbidden; however, electron
paramagnetic resonance (EPR) has been observed
in many cases.>® In these cases, the absorption
is observed with the rf field H,, parallel to the axis
of symmetry. This is because the states of the
doublet are mixed by local perturbations on the
basic axial crystalline field symmetry at the para-
magnetic-ion sites, thus giving a nonzero transition
probability in which the states are coupled via the
2z component of the spin operator. In some cases,
electrically induced transitions dominate the mag-
netically induced ones.*® This can arise when the
non-Kramers ion occupies a site lacking full in-
version symmetry.

Due to the existence of a nonzero orbital moment
associated with a free non-Kramers ion, a strong
spin-lattice interaction is expected in cases where
the spin-orbit interaction is large. The local crys-
tal field for such ions inserted as impurities in
host lattices is often axial (even for cubic lattices).
This may be due to local charge compensation, but
also may stem from a Jahn-Teller distortion of the
local complex. Thus, in an axial crystal field each
J level is split into singlets and doublets. Often
the singlet is quite far removed from the doublet.>®
The remaining degeneracies may be removed by
local strain distortion to lower symmetry than ax-
ial. This is observed as a zero-field splitting of

the resonance absorption.

In the case of each of the observations in Refs. 2
and 3, the resonance absorption was asymmetri-
cally broadened, indicating an inhomogeneous dis-
tribution in the perturbation from axial symmetry.
This implies that the perturbations are caused by
local strains corresponding to imperfections in the
bulk host crystal.! Where the broadening is large
(>10™* cm™), a strong spin-lattice interaction is
indicated. Thus, a strong spin-phonon coupling is
anticipated, giving rise to an observable APR ab-
sorption. This is indeed found to be the case®®
for CaF,: U* and Al,0,: Fe?*, In such cases, the
APR signal is more readily observed than the
EPR, since, as pointed out, the transition within
a non-Kramers doublet is allowed for phonon-in-
duced transitions, but forbidden for the case in
which the probe used is the magnetic field compo-
nent of a microwave radiation field,

It is expected that non-Kramers impurity ions
having a strong spin-lattice interaction would give
correspondingly strong APR and observable EPR
signals. Such is indeed the case® for CaF,: U*
and™® MgO: Fe®. In these cases, the line shapes
may be compared. The shapes are expected to be
fundamentally different, since the transition prob-
abilities are determined by entirely different mech-
anisms, Specifically, the APR transition probabil-
ity is the same for each spin packet of the absorp-
tion distribution, whereas the EPR transition prob-
ability depends explicitly upon the local perturbed
cavironment of each ion. A study based on a com-
parison between the EPR and APR line shapes could
lead to a deeper understanding of the mechanisms
which cause coupling between the states.

In this paper, we propose a theoretical model for
the line shapes of magnetic-resonance absorption
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for transitions within a non-Kramers doublet for
the point-group symmetries C,, and 0,.!° The asym-
metric broadening of the absorption distribution is
interpreted on the basis of the spin-lattice coupling.
For the case of C;, symmetry, the calculation was
done for both electric-rf-field-induced and magnet-
ic-rf-field-induced transitions, where the symme-
try is Cg, without and with inversion symmetry, re-
spectively. It is shown that the shapes of the APR
and EPR absorptions are fundamentally different,
whereas those of the APR and PER (paraelectric
resonance) lines are very nearly the same.

II. THEORY

In this calculation, we assume random distribu-
tions of the local strains, This will be a good ap-
proximation provided the sources of the strains are
heterogeneous and can be considered remote. The
probability at a given ion site that the perturbation
to the local crystal field symmetry is produced by
a given set of local strains whose components are

{e;}G=1,...,8) is
ﬁﬁi(ei) , (1)
i=1

where p;(e;) is the probability distribution for the
strain component ¢;. We let the distribution for
the absorption for a single ion, the width of which
is determined by the lifetime broadening, be G(6E)
where 6F is the energy variation over the density
of final states, Then, each ensemble of spins
whose local perturbed environment is associated
with a given set of strain components {e;}; makes

a contribution to the resonance absorption at E=hv:

SI(E)~ [(i |30y !f>IZG(E—E’)fI ple) (2)
=1

where the first factor on the right is the square of
the matrix element of the Hamiltonian for the rf
field which connects the initial and final states, and
E'=E’'(e,,...,eg) is the correction to the transition
energy resulting from the perturbation produced by
the set of strains whose components are {e;}. Ne-
glecting extraneous constant factors, the resonance-
absorption line shape is then calculated from the
integral !

2
IE)= [ |G |5 | 1] GE=-EN,ple)de, . (3)

This constitutes a volume integral over the full six-
dimensional configuration space defined by the strain
components, However, the Gaussian probability
distributions will guarantee only very small contri-
butions from very large strains in the integrand in
%q. (3). Thus, we use the infinite limits in (3) to
greatly facilitate the mathematical calculations
which are to follow.

The approach presented to this point is basically
similar to that done by:McMahon.!* Other methods

BOWDEN, MEYER, AND DONOHO 3

have been introduced for the calculation of intrinsi-
cally strain-broadened line shapes. The most ele-
gant of these was presented by Stoneham®? for strain
broadening caused by first-order effects in which

he explicitly incorporates the nature of the sources
of strain into the model. This elegant method in its
basic assumption does not, however, carry over to
the cases where the lowest-order contribution in the
strains is second order as in the case for transitions
within a non-Kramers doublet.!

A. Site Symmetry Dy, and Cg,: Magnetic Quadrupole and
Phonon-Induced Transitions

In the absence of hyperfine interaction, the mag-
netic-resonance experiments can be interpreted on
the basis of an effective spin-1 formalism? % in
which the effective spin Hamiltonian is

¥=g,BH,S, + & B(H,S, +H,S,)
+D[Sf—é5(8+l)]+§'?'§, (4)

where the axis of quantization is along the symme-
try axis. The last term is a perturbation on the lo-
cal axial crystal field. This term is written ex-
plicitly in terms of the elements 7,;of the coupling
tensor 7,

->

-7 8= Hryy + 122)(S.S, +5,8.) + 7553

+3lr1y = 722) = 2i7,,] S2

+3[(7y, = Top) + 2i7,,] S?

+3(7y13 =i 735)(S, S5 +55S.,)

+3(T3 +8753)(S.S3+S55.) . (5)

The assumption that these perturbations are caused
by local strains e,; is expressed in terms of the el-
ements of the coupling tensor 7 by

Tij :EI: Gijmrn - (6)

For Dy, as well as for C,;, symmetry, there are only
eight independent components for the spin-lattice
coupling tensor G.!° We note that the trace is not
an observable and set it equal to zero; thus, the
number of independent components is reduced to
six,

For large enough axial component to the crystal
field, the triplet defined by Eq. (4) is split such
that the singlet is isolated from the doublet,!*!3 in
which case the frequency of the transition is, to
second order,?

hV:Zg,,BHz+8AZ/hI/Q ’ (7)

where sy, is the unperturbed Zeeman splitting and
A is the distribution in the strain amplitudes which
mixes only the states of the doublet:

A=3(319-iTg) , (8)
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where
To=T11— Tiz ANd Tg="Ty,

In terms of the strain amplitudes, the relevant ten-

sor components are, using the Voigt!® notation,
70=(G; = Go)le; - €5) + 2Guey (92)
and
To=G s +3(G1y = Grades . (9b)

The matrix element coupling the states of the dou-
blet for an EPR experiment is shown in Appendix
A to be

1O = 16[ 226202, /o] A2 . (10)

The factor A is that given by Eq. (8) and is thus a
distribution function in the strain amplitudes. Con-
sistent with the assumption that the perturbing local
strains are random, we specify the probability dis-
tribution for each of the six strain components as a
Gaussian:

pile) = (n, /T2l (11)

The mathematics can be considerably simplified
by noting from Eqs. (9) that 7y and 74 are indepen-
dent linear combinations of five of the six indepen-
dent strain components. From Egs. (3), (7), and
(10), it is seen that the strains occur in the calcu-
lation only in the form of Eq. (8). We may there-
fore transform the integral in Eq. (3) from an in-
tegral over a six to an integral over the two-dimen-
sional configuration space defined by 7, and 7.
Equation (3) may now be written in the equivalent
form

[(E) =k [_ (27%+72) G[E -(2/hup) (i 7%+ 72)]

x II Pi(7;)d7; , (12)
1=0,6
where
K= 4glzl BaHsf/(hVO)Z ’ (13)

w 6
Py(T) = Lo 6[7o—asle; - ep) - 2”1‘34]HPf<ei)det ,

and
6
Py(1e) =f_: 8(1e — ares — 3ase5) [11(e;)de;, . (14)
i=1

Here, we have
a;=Gyys a;=Gy -Gy, (15)

and the first factor in the integrand in each expres-
sion, Eqs. (13) and (14), is the appropriate projec-
tion operator in the form of the Dirac & function.

The method of performing the indicated integrals
in Eqs. (13) and (14) is shown in Appendix B, and
the results are

Py(ro) = (vo/ )20 (16)
and
Pe("'s) =( 75/77)1/26-737(25 . 1)

The new parameters ¥, and ¥, are thus the distribu-
tion parameters for the variables 7, and 74, respec-
tively. These new distribution parameters are
given in Appendix B in terms of the local strain
distribution parameters and the spin-lattice cou-
pling coefficients.

We consider now two special cases: Case A,
where the bulk-crystal symmetry is cubic, and
case B, where the bulk-crystal symmetry and the
local-site symmetry are the same,

Case A. We calculate the mean square deviation
of Ty and 75 with the strain components referred to
the crystal axes. We make the cubic approximation
that the diagonal intrinsic strain distributions are
all equal andthe off-diagonal ones arelikewise equiv-

alent, It is easily shown that this leads to the re-
lation
Ye=4Ye=7 . (18)

Case B. In this case, we have no real physical
basis for establishing an equivalence relation be-
tween the distribution parameters ¥, and ¥g. In or-
der to simplify the integration of the equation for
the absorption, Eq. (12), we here imposethe equiv-
alence relation calculated for case A, The effect
is then a one-parameter instead of a two-parameter
model, where the one parameter Yy is an averaging
of ¥¢ and ¥g.

We consider first the case where the lifetime
broadening and the width of the inhomogeneous ab-
sorption are such that G(E) in Eq. (12) may be
taken as the 6 function, i.e.,G(E)=6(E). If we
change to polar coordinates, Eq. (12) becomes

I(E) = (k /1) vgro? [ [5 dbdr r*6(E - ar?)
x exp(~ y¢r2cos?) exp(~ 4y 2 sin6) |
(19)
where a =2/hv,, Making the substitution x =72 and
using the relation (18), we have
1(E)=2«y [, dvx6(E - ax)e™* (20)
Thus, we find that
[(E)=2—ZZ<—§—>6"E/°‘ for EPR. (21)

If the spin transitions are induced by phonons (i.e.
APR), the matrix element appearing on the right-
hand side in Eq. (3) is given by'?

(i |50 | £y = |8 D&)- 815 (22)

to lowest order in the spin operator 5 compatible
with the requirement for time-inversion invariance
for the Hamiltonian in the absence of an applied mag-
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netic field. Here, D(¢) is the dynamic spin-phonon
coupling tensor, the elements of which can be writ-
ten as a linear combination of the time-varying
strain components. Since Eq. (22) is second order
in the spin operators, the transition occurs in first
order for a non-Kramers doublet and is very nearly
independent of the mixing of the states due to the
static crystal-field perturbations. Therefore, the
matrix element appearing in the integral on the
right-hand side in Eq. (3) is a constant of the in-
tegration. Thus, Eq. (3) becomes

I(B)=k" [LGLE -(2/hw)d72+ )], Py(ry) d;
(23)

where «’ is a number appropriate to the particular
direction of propagation of ultrasonic waves in the
crystal. Transforming to polar coordinates and
integrating gives

I(E)=2¢"(y/a?)e"®* for APR. (24)
Comparing Eqgs. (24) and (21), we observe that
there is a basic difference between the EPR and
APR line shapes, as expected., This is easily seen
as a direct consequence of the entirely different
mechanisms stimulating the same kind of transi-
tion,

Equation (24) does not fit observed spectra very
well, at least in some cases.!® Let us now consid-
er a Gaussian homogeneous distribution G(6E) in
Eq. (3),

G(E-E")=(0/m"% exp{- 0¥[E- a(i7T3+ 1))} .
(25)

Equation (25) may actually be considered the con-
volution of the distribution resulting from the homo-
geneous lifetime broadening and any other distribu-
tion which causes a symmetric broadening of the
resonance line not caused directly by local crys-
tal-field perturbations. There may be, for exam-
ple, such extraneous interactions which cause un-
resolved hyperfine or exchange broadening. Equa-
tion (25) will be referred to in future discussion

simply as the “homogeneous” distribution. Equa-
tion (12) is now written as
2T e 2
I(E):(4K70/n3’2)e"’2E2 fo fo dodrvie™
xexp[- o¥(a®* - 2aEv?)] | (26)

where we have again transformed to polar coordi-
nates as was done for Eq. (19). Now let

a=0%a?, b=200’E, c=y ~b. (27)

We now have
I(E)=(2ky o/7'3)e™ 252 f:dr 73 exp(- art - c7?) .
(28)

This may be written in the form

1(E) =(2kyo/m'?)e o5 f:dxx exp(-ax?-cx) .
(29)

The last integral is easily performed, resulting in
the expression for the line shape

2KO‘-221 c[m\M'? 2
Y euE{za 4a<_> c/4a[1 q)<2a12>]

for EPR. (30)

Here, ®(z) is the error function, It is to be noted
that for an arbitrarily narrow homogeneous distri-
bution, one gets from Eqs. (30) and (27)

I(E) —».Z_KY<£>6-7E/DL , E>0 (31)
rew O\

I(E)=

as expected.

If we consider now the APR line shape, where
the matrix element in Eq. (3) results from (22) and
is thus independent of the mixing of the states of the
doublet by local crystal-field perturbations, we
get the following expression for the line shape:

I(E)=(2k ’yo/ﬂ”z)e“zEZ fowdx exp(-axi-cx).
(32)

This integral is easily carried out to give

I(E) = 2¢"yo/ "/ %™ EZ{%/:{eczf““[l - @(2‘/—6‘)]}

(33)

for APR which is compared with Eq. (24). For an
arbitrarily narrow homogeneous distribution we
have
I(E)——*ZK’ (,y/OlZ)e.yE/a. (34)
g

Figure 1 shows the theoretical EPR absorption
derivative, and Fig, 2 shows the theoretical APR
absorption calculated from Eqs. (30) and (33), re-
spectively. Hypothetical values were taken for the
homogeneous-distribution parameter o and for the
strain parameter y. Comparison of Figs., 1 and 2,
which were calculated for the same values of the
parameters ¢ and v, shows the distinctive compar-
ative features anticipated on the basis of the model
between the EPR and APR line shapes. The posi-
tion of the peak of the undisplaced Zeeman absorp-
tion is indicated in Figs. 1 and 2 as the g position.
This is the position at which the “g value” for the
resonance should be taken on the basis of the model.

B. Site Symmetry C,,: Electric Dipole Transitions

For this case, we still have the Hamiltonian [ Eq.
(4)] from which we obtain the resonance frequency
Eq. (7). We assume that there are no strong ap-
plied stationary electric fields present, In this
case, the initial wave functions for the states of the
doublet have both even- and odd-parity components,
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FIG. 1. EPR-absorption derivative for Dy, site
symmetry for three different values of the intrinsic
strain distribution parameter. The homogeneous
distribution parameter for the three cases is 0=1=0.667
x10-3cm™!, The intrinsic strain distribution param-
eters for the narrow, intermediate, and broad absorp-
tion curves are, respectively, ay™=0.513x10"3cm"!,
9.946x10" cm™!, and 1.67x10"*cm™!, The position of
the “g value” for the absorption distributions, i.e., the
position of the peak of the undisplaced homogeneous
distribution, is indicated in the figure by the vertical
line.

so that an electric field § can have a first-order ef-
fect.!® If the transitions are induced in a radiation
field, such as would occur in a microwave cavity
for instance, the matrix element governing the
transition probability is given in Appendix A, In a
region of a microwave cavity where the magnetic
field component H, =0, we have effectively

(3|3, | 1) |2 = 8ZRA(1 - 24%/T?) | (35)

where R is the spin-electric-field coupling, &, is

APR ABSORPTION FOR C,, LOCAL SITE SYMMETRY

9

ARBITRARY UNITS

9 € 10 cm™!

FIG. 2. APR absorption for Cs, site symmetry for
three different values of the intrinsic strain distribution
parameter. The values for the other parameters are
those given in Fig. 1.
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the maximum value of the time-varying electric
field, 2T is the unperturbed Zeeman term, and A
is the perturbation distribution given by Eq. (8).
The line shape is thus seen to be the proper linear
combination of Eqs. (30) and (33). Thus, we have
for the piezoparamagnetic resonance (PER) line
shape

k'yoa? _ 2 ofql/?
I(E)»‘ 87]'1/2(1@ o E 2a1/2 (1602+C)
c 2
1-¢f — (c“/4a) _
x[ 2Ja>] e 1} (36)
for PER where
K’ = 84R%.

The PER line shape from Eq. (36) is shown in Fig,

3, where the values of the parameters X and ¢ are
the same as those used in Figures 1 and 2.

The position of the peak of the undisplaced Zee-
man absorption is indicated in the figure as the g
position. This is the position at which the g value
for the resonance should be taken on the basis of the
model. When Fig. 3 is compared with Figs. 1 and
2, it is seen that the PER linewidth is very nearly
the same as that for the APR line in Fig. 2. This
is, of course, a direct manifestation of the fact that
the mixing of the states by the crystal-field pertur-
bations gives only a second-order contribution in
Eq. (35). Itis interesting to note that if the sample
material is in a region of nonvanishing ., and H,,,
the line shape is more complicated, i.e., from Ap-
pendix A, the transition probability for this case is
governed by Eq. (A14). The factor p in the next-
to-last term in Eq. (Al4) is proportional to a lin-
ear combination of strains and therefore gives no
contribution to the integral (3). The term in the

PER ABSORPTION DERIVATIVE FOR
Cay LOCAL SITE SYMMETRY
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) | 2 3 4 5 6 7 8 9
E 1073 cm™
FIG. 3. PER-absorption derivative for Cj, site

symmetry for three different values of the intrinsic
strain distribution parameter. The values for the other
parameters are those given in Fig. 1.
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difference between ¢? and p? gives no net contribu-
tion to the line-shape integral; this is discussed in
Appendix A. Therefore, we obtain the line shape in
this case by adding (30) to (36). The last case dis-
cussed is included purely for qualitative purposes,
since the requirement of a knowledge of the relative
magnetidues of §,, and H,, makes it comparatively
uninteresting from the standpoint of a quantitative
evaluation of the parameters of the model from an
experimental line shape.

C. 0, Symmetry: Magnetic Quadrupole and Phonon-Induced
Transitions

We again consider the lowest-order nontrivial
spin manifold for the ground state of a non-Kramers
ion compatible with Kramers theorem and time in-
variance for that part of the Hamiltonian which is
independent of any externally applied magnetic field,
namely, a triplet.! The triplet is not split in the
octahedral symmetry; therefore, we must consider
explicitly the mixing of the singlet into the states of
doublet, even when the degeneracy is raised by an
externally applied magnetic field and/or crystal-
field perturbations., Thus, there exist two distinct
conditions which are expected to give entirely dif-
ferent line shapes for microwave absorption, one
with the rf field H,, parallel to the applied field H,
and the other with ﬁr, perpendicular to ﬁo. In the
first case, the transition probability is nonzero only
if the states of the doublet are mixed, say by crys-

- tal-field perturbations; in the latter case, the
transition probability is dependent entirely on the
mixing of the singlet into the states of the doublet.

A calculation similar to this one has been done
by McMahon!! for ﬁ,, perpendicular to the applied
field ﬁo. In that calculation, the strain probability
distributions were represented as Lorentzian, We
present here our calculations for the line shape for
both cases, ﬁ,_.f parallel and perpendicular, We as-
sume a Gaussian probability distribution for the
strains in order to be consistent with the initial as-
sumption that the local crystal-field perturbations

" can be considered random. Under this assumption,

we give also the APR line-shape calculation for com-

parison,
Consider the spin Hamiltonian for effective spin-

1 and octahedral symmetry,

Jc=gBH .5+8.D-58 ,

where the second term is added as a perturbation
on the first. The last term is used to describe lo-
cal crystal-field perturbations, and thus the ele-
ments of the coupling tensor D can each be written
as a linear combination of the local strain compo-
nents as in the previous cases. We may consider
the perturbing Hamiltonian in the form

(37)

5¢'=8-D-§=Dy,8% + AS? + A*S?

BOWDEN, MEYER, AND DONOHO 3

+A"(S,S5+85S,) + A"*(S. S5 +S,5.)

+3(Dy, +D;,)(8,5.+S.8,) , (38)
where
A=%Dy - Dy — 2D;) (39)
and
A" = 3(Dy3 — iDy). (40)}

Considering only transitions within the non-Kramers
doublet, i.e., | AM | =2, the resonance frequency,
to second order, is obtained from Eq. (37), and the
result is

hv=2gBH,+ (8/hvy) (A% + A7) | (41)

where avy=2gBH, is the unperturbed Zeeman
splitting. Thus, the correction E’ to the transition

energy is
E'=(8/hvy) (AZ+ A™%) |

Expanding each element of the tensor D in terms
of the local strain components

D,,:Z} Gini€r
k1

(42)

(43)

and using Egs. (39) and (40), Eq. (42) can be writ-
ten explicitly in terms of the local strain compo-
nents and the spin-lattice coupling parameters:

E'=(8/hv) [%Gfx(en - ezz)2+ 2634(ef2+e§1 +e§3)] ’
(44)

where the number of independent components of
the coupling tensor have been reduced to two by
setting the trace equal to zero and by requiring
that G be invariant under all symmetry operations
compatible with the unperturbed local crystal-field
symmetry.

Let

a'=(hvy)?, a=2G%, b=3G,. (45)

The intrinsic strain broadening for non-Kramers
ions in octahedral symmetry where the transition
is within a doublet '° is expected to exhibit consid-
erable broadening. This is seen from the fact that
both crystal field mixing of the states of the doublet
and mixing of the singlet into the doublet states are
of about equal importance. This is contrasted with
the condition where the ion site has C;, symmetry
with strong axial distortion, treated in Sec. IIA.

In the latter case, the influence of the singlet on the
resonance frequency for transitions within the dou-
blet is small and may even be neglected. Thus,
there should be a tendency toward greater intrinsic
broadening for non-Kramers ions in O, symmetry.
Since the intrinsic strain broadening is expected

to be dominant, we represent G(E) in Eq. (3) by a

6 function, i.e.,

G(E)=6(E) . (46)



3 INTRINSICALLY STRAIN-BROADENED LINE SHAPES FOR..

The resonance absorption for the APR line shape in
this case is thus

IE)=k"s[(2,/7 ] f dey, ..
+b(e5+ ek + e2)]} expl-A2(e%+ ek + €2)]

.,deg {E - ofale;, - e,

Xexp| - 47)

where we have used the contracted Voigt notation!®
and where we have made the cubic approximation
that the distributions of the diagonal strains referred
to the crystal axes are all identical, and likewise
the distributions of the off-diagonal strains are
equal. Here, r’is a factor which enters because
of the APR transition probability which is governed
by the matrix element between the states of the
time-dependent Hamiltonian of the form of Eq. (22).
As in Sec. IIA, k' is a number appropriate to the
particular d1rect1on of propagatlon of ultrasonic
waves in the crystal.

If we make the transformation

i+ 2+ ed)],

e — - 2_ 2. 2. 2
u=e —ey, v=eq+e,y, v =egt+es+eg,

(48)

e,=rsinfcosp, e;=rsindsing, eg=vcosh ,

Eq. (47) becomes

Noy3 [® rw
I(E)= 212 %%&f f dudr r26(E - o' (@ + br2)]
- 0O 0

A2 e A2,
Xexp (—-714 > exp (—Tr )
Equation (49) may be written in the form
I(E)=2Y2(k Wir3/m 5/%) f F@'\GE~-1")ar', (50)

where

(49)

© 22

Fr')= [ dud(r'- o'al)eM 2 (51)

and
(ot 1 "o 2 " no2y 22

Gir )=j0 drr' 6@’ = a'vi’e (52)
with 7"'=E~1'. The integrals in Eqs. (51) and
(52) are easily carried out to give

F@')= ——7—1 exp (- ———",—Az 7! (53)

" (@ar )2 P\~ 2a%

and

G('r")=———7—1 7" 2 exp _ 7! (54)

2(a'p)¥? 4a'

Substitution of Eqs. (53) and (54) into Eq. (50)
yields the expression

E
KAZAS R ,/
-1E/4ab ar
1725724 lz 3172 €
2 (ab®)! 0o

(E-T)V2 1 xa R

I(E)=

(55)
Let

651
R .
p-4a'b’ q=zala’ C=q—p, (56)
the integral in Eq. (55) is performed to give
k23
1(E)= DY 'z(abs)uz
x Ee?®[B(}, 3 )1F1(3,2; —cE)]  for APR.
(57)

Here, B is the beta function,?® and 1F, is a degen-
erate hypergeometric series in the argument. The
APR absorption given by Eq. (57) is shown in Fig.
4, where, for convenience, we have set equal the
two strain distribution parameters \, and X,. The
absorption curves are shown for three different
values of the strain parameter X,

We turn our attention now to the EPR absorption,
and consider first the case where the microwave
rf magnetic field _ﬁ,, is oriented perpendicular to
the applied dc field Hy. We have taken the direc-
tion of the quantization z along the direction of
the applied field H,. The Hamiltonian for the rf
field involves terms in S, and S_.. In order to get
a nonzero matrix element, we must therefare
consider the mixing of the singlet into the states
of the doublet. Then, using first-order correc-
tions to the spin functions, we have

|(3|30.¢| £)| 2= 2GEHE /(o P (€2 + €2), T, LH,.

(58)

APR ABSORPTION FOR O, LOCAL SITE SYMMETRY
5

ARBITRARY UNITS

0 20 40 60 80 100 120 140 160 180
E 103 em™!
FIG. 4. APR absorption for O, site symmetry for
three different values of the intrinsic strain distribution

parameter. The diagonal and off-diagonal intrinsic
strain distribution parameters A; and A, were set equal

‘for convenience, giving a one parameter strain distribu-

tionA, The three values for X! for the narrow, inter-
mediate, and broad absorption curves are A1=1,11x 1074,
1.25%x107%, and 1.43x10"%, respectively. The values

for the spin-lattice coupling parameters G;; and Gy

were taken as 720 and 460 cm=!/ (unit strain), respectively.
These values correspond to an average (see Ref. 11) of
experimental values reported in the literature.
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We proceed in a similar fashion as in the pre-
ceding example to obtain the expression for the
resonance absorption line shape:

PRY IS i E_ (BT
1E)~grsmeq ity e [ e
0
(59)
where
k=2GAHZ/(hwyF. (60)

Taking the integral in Eq. (60) gives

kA2 a3
I(E)= 21/21,5/201112(2(1

b3 )1]2

XEze'pE[B(z, 2) F;(za - cE)]
for EPR, H, LH, (61)

The derivative of Eq. (61) is shown in Fig. 5 for
three values of the strain parameter X, We have
again arbitrarily equated the diagonal strain pa-
rameter A, with the off-diagonal one A, to yield a

single parameterization for the intrinsic strains X.

We consider now the absorption line shape when
the rf magnetic field ﬁr, is oriented parallel to
the applied dc field ﬁo. As in the previous case,
we use first-order corrections to the spin func-

tions to get

4
[l )= g ate

Using the transformation (48), the expression
for the absorption line shape becomes

- e,) + bel. (62)

21/2K "AZ AS
I(E)=____ﬁ2_1_2

o 3 o T 2T
X / f f f f dudvdrdfde
-0 -0 0 0 JO

x r2sinb (au®+ br? cos®)

x8[E - a' (@ + br?)]

x exp[- $25(4 + 7)) exp (- $23r%),  (63)
where

k"= 4H% /(hvy)?. (64)

The integral in Eq. (63) is carried out in the
same way as in the previous calculation to give

I(E)= WE 2e?E[B(3, 3
X1F1(§;3;'CE)+§ 5,51F1(2;3 'CE)]

for EPR, H,,IH,, (65)

where

EPR ABSORPTION DERIVATIVES FOR
0, LOCAL SITE SYMMETRY -H, L H,

N
T

ARBITRARY UNITS
o

N ——

_2 1 1 1 1 1 1 1 1
¢} 20 40 60 80 100 120 140 160 180

E 1073 cm-!

FIG. 5. EPR-absorption derivative for Oy site sym-
metry and Hrfl f, for three different values of the in-
trinsic strain distribution parameter A. The values of
the parameters used are those given in Fig, 4,

n=2%2""A 23/, (66)

The line shape given by Eq. (65) is shown in
Fig. 6 as the derivative for the same parameters
used for Figs. 4 and 6. Illustrated in Fig. 7 is
a normalized comparison of the line shape for
ﬁr‘lﬁo with that for ﬁ,, I ﬁo. Thus, it is seen
that there can be noteworthy discrepancies in the
two line shapes depending upon the values for the
strain parameters A; and ,.

III. DISCUSSION

The results of these calculations are applicable
to a variety of materials, the APR and/or the
EPR of which have been reported in the literature.
For instance, Eqs. (30), (33), and (36) can be
applied to Ca.FZ:U4+ where the local axial distor-
tion is caused by local charge compensation or a
Jahn-Teller effect.®:1'22 The superhyperfine
structure observed in this material® is resolved
only at very high magnetic fields, therefore the
absorption at low magnetic fields would lend itself
quite well to analysis using the Gaussian form
for the homogeneous distribution Eq. (25) where
the distribution parameter o is considered the
result of the convolution between the lifetime and
unresolved superhyperfine broadening.

A second example of the application of Eqgs.

(33) and (36) is AL,O,: Fe?*, though only the APR
has been reported® as yet. The local symmetry

of the AI’* ion is actually C;?3; however, the devia-
tion from the higher symmetry can be regarded as
a slight perturbation. This perturbation amounts
to an angle 6=4.3° which is zero for C;,. Pre-
sumably, the Fe®* enters the Al,0, lattice substi-
tutionally. ©

The APR line shape for ALO,: Fe?* has been an-
alyzed on the basis of Eq. (33), and the agreement
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EPR ABSORPTION DERIVATIVES FOR
0, LOCAL SITE SYMMETRY -H Il H,

o

ARBITRARY UNITS

N ——

- 2 1 i 1 1 1 1 1 1
0o 20 40 60 80 100 120 140 160 180

E 1073 cm™!
FIG. 6. EPR:absorption derivative for Oy site sym-
metry and H, || i, for three different values of the in-

trinsic strain distribution parameter X. The values of
the parameters used are those given in Fig. 4.

is quite good.?* In this treatment, the PER line
shape was predicted using the evaluation of the
intrinsic strain parameter from the APR com-
parison. The effect of uniaxial stress for the
PER was also predicted by introducing uniaxial-
stress boundary conditions into the model. The
comparison with uniaxial-stress measurements
offers a means for evaluating the magnitudes of
the spin-lattice coupling parameters independently

of the concentration of paramagnetic impurity ions.

The results of the calculations for O, symmetry,
Eqgs. (57), (61), and (65), are directly applicable
to the |AM,| =2 transition in MgO: Fe®*. We have
previously mentioned the work of McMahon!! in
which a line-shape calculation was presented for

EPR ABSORPTION DERIVATIVE FOR O, LOCAL
SITE SYMMETRY-H, ; ORIENTATION COMPARISON
3

ARBITRARY UNITS

-2 o 1 ! 1

0 20 40 60 80 100 10 140 160 180
E 10-3 em™!

FIG. 7. EPR-normalized absorption derivatives for
Oy, site symmetry. The solid curve is for H,s 1 H; and
the dotted one is for ﬁ,., I ﬁo. The value for the strain
parameter A-! in each case is A1=1,25x%10" and the
other parameters are those used in Fig. 4.

EPR with A, L H,. Equation (61) gives a favorable
comparison with this previous work, whereas (65)
gives the line shape for ﬁ,, I _ﬁo which was not con-
sidered in Ref. 11. The intensity of the absorption
in the latter case is at least several orders of mag-
nitude stronger than in the former. Also, the
}AM| =1 and the double quantum line are no longer
present with the parallel orientation, and thus the
problem of overlap of the absorption lines is elim-
inated. Equation (57) gives the APR absorption
which can be used for the analysis of line-shape
comparison studies in conjunction with Eqs. (61)
and (65). The results of the calculations were
presented taking the intrinsic strain parameters

A; and A, equal. The effect of varying the ratio

of these parameters is shown in Fig. 8.

1IV. CONCLUSION

For conditions where the EPR and APR absorp-
tion can be studied on the same sample material,
the model presented here provides a means for
comparing these line shapes. Conditions of this
type have been observed for? CaF,: U** and™®
MgO: Fe?*, Such comparison studies are basic to
the understanding of the spin-phonon interaction
of paramagnetic impurities in solids,? and to the
interpretation of the source of the zero-field broad-
ening for non-Kramers doublets. !

The assumption, in this model, that the local
strains follow random distributions can be justified
only by comparing the model with experiment. The
qualitative features are certainly in agreement. %18
Good quantitative agreement would mean that the
sources of strain are, for all practicality, remote.

EPR ABSORPTION DERIVATIVE FOR O, LOCAL SITE

SYMMETRY-INTRINSIC STRAIN VARIATION COMPARISON
3

/ \ N
L[/ N,
2 fi \\\
2|/ S
\
E | /l AN
I
> \
o \
< \
= AN
Y
g >
P=4 N —_——-
N~ -7
-1+
-2 1 1 1 1 L 1 1 1
0 20 40 60 80 100 120 140 160 180

E 1073 em™!

FIG. 8. EPR-absorption derivatives for O, site sym-
metry and Hyy l[Hy. The solid curve corresponds to the
values for the intrinsic strain parameters Aj'=1.43 x10"!
and A;'=1,11x10"%, The dotted curve has Aj'=1.11x 10
and A;'=1.43 %10 for the strain parameters. The spin-
lattice parameters are those given in Fig. 4.
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The results of the calculations for the line shapes
bear out the nature of the matrix element of the
Hamiltonian describing the probe which couples
the initial and final states. The dissimilarity of
the APR as compared to the EPR line shapes as
seen in Figs. 1-8 is a direct manifestation of the
entirely different mechanisms involved in the two
types of experiments. A detailed comparison
study, based on the model, can lead to a deeper
understanding of these mechanisms.

In cases where the impurity center lacks inver-
sion symmetry, the PER effect may be operative. !°
For C,, symmetry, Eq. (36) provides a means for
interpreting the relative strength of the electric
field interaction with respect to the spin-phonon
coupling. 2

The model given here for the intrinsic strain-
broadened line shapes for non-Kramers doublets
has been extended by introducing into the model
uniaxial-stress boundary conditions. The results
of these calculations will be given in the following
paper. In this treatment, the model gives the
spin-lattice coupling terms as adjustable param-
eters, and thus provides a means for evaluating
these by comparison with uniaxial-stress experi-
ments, independently of the concentration of the
paramagnetic impurity ion. The effect of uniaxial
stress for the PER of CaF,: U** has been studied
experimentally and interpreted on the basis of the

model. %
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APPENDIX A

We wish to calculate the matrix element for the
transition probability between the states of the non-
Kramers doublet for C;, symmetry. We shall cal-
culate the eigenvalues and eigenfunctions under the
assumption that the singlet is far removed from
the doublet by the axial component of the crystalline
field and ignore any mixing of the singlet into the
states of the doublet. Under this assumption, the
eigenfunctions for the states of the doublet may be

written as

Yo=9l+ o)l (A1)
and

Vo= Byl +¥2 . (A2)

The secular determinant of Eq. (4) can then be
written in the form

ay—-x 0 a3
0 azg'-h 0 =0. (A3)

BOWDEN, MEYER, AND DONOHO 3

The nontrivial eigenvalues are

=0 (T2 44712 (A4)
where

fD=T33+%D , (A5)

T=g,BH,, (AB)

and A is given by Eq. (8).
For A%/T?« 1, we find that

a, ~A/T A
and

By =A*/T, (A8)
The normalization N is approximately

N=(1+4%T%12 (A9)

If the applied rf magnetic field H,, is taken par-
allel to the trigonal axis, the Hamiltonian 3C,, for
the radiation field, including both the magnetic and
electric field components, is

¥ry =8 BH3(t) S5 + 5 p(t) SZ+ 3p*(¢) S?

+24(t) (5,85 +535,) + 5q*(¢) (S.S3+S5S.)

+3Ry55 85(t)[SE-S(S+1)], (A10)
where p(¢)= @ +iB and
qt)=v+id . (A11)
For C,; symmetry, 2" we have
@=[Ryy 8,(t) = Ry 85(1)],
(R 8(t) +Ryyy 85(1)], (a12)

B=
¥=3[Ryp5 8:1(8) +Ryy5 85(1)],
6=3[Ri3 8,() = Ryz5 85(1)] .

In Egs. (A10) and (A11), &,(t) and &8,(¢) are the
components of the rf electric field perpendicular
to the trigonal axis and &,(¢) is the axial compo-
nent. The R,,, are the electric-field-coupling pa-
rameters. ¥’ For C,, symmetry, we may choose
the x and y axes such that Ry;; =0; thus,

p==Ry(8,-18y) .

For convenience, we write R,,,=R in what follows.
If we take 85(£) =0, the square of the matrix ele-
ment for the transition probability between the
levels of the doublet is, through second order in
a/T,

(A13)

[()|?=R? é’z(t)[l - —IEZ(AZ— 02+p2)]
(A14)
where
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0=%Ty, P=3Tg (A15)
and
82(t) = 83(t) + 85(1) .

Consider the case where the sample is in a re-
gion of high electric field rf intensity so that the
magnetic field contribution to (A14) may be ne-
glected. The last two terms are then zero. In the
remaining terms, the term in the difference be-
tween o and p2 is easily shown to give no net con-
tribution to the line-shape integral. This can be
seen by using Egs. (A14) and (A15) in Eq. (3), and
observing that one gets two integrals, one for o2
and the other for p®. Transforming to polar coor-
dinates the integral over the angle 6 leaves the
same resulting integral in each case but of opposite
sign. Thus, the effective form of the matrix ele-
ment for the line-shape calculation in this case is

|() |2 =R2 8% [1 - (2/T?) a2] . (A17)
APPENDIX B

In taking the integrals in Eqs. (13) and (14), we
make use of the following theorem.
Given:

m m
Py(r)= [ 6(r, = ‘E ciey) }Ili’c(ec)dec , (Bl
=1 a

(A16)

where the ¢; are real numbers and the p,(e;) are
real functions of the real variables e;; it follows

that
1 ® T;— %,
PI(TI)— H‘lc‘l -[; dxl;"'& Cp )

Xp, (..___"L> pq(%m_i) ’ (B2)
C, q

dxm-lpk (

where &,1,...,q are integers covering the range
i=1,2,...,m without regard to any particular or-
dering.

Proof:

Equation (B1) can be rewritten in the equivalent
form

Prp)= [ dx,6(1;-x,~chep)

xa(xl Z: C&)Hiﬁ(ei)dei (B3)
i#k

We take the integral over e, to give

1 ® -
PI(TI)= E‘I‘ / dx,p <T_,c’¢_x1_)

m m
><6<xl— > c,e,) II pye)de,.  (BA)
HH ik

Similarly, we may rewrite Eq. (B4) in the form

Py = ]/ dxldxzpk( )

Xb(xl—xa—c,e,)tB(xz D) c,e,)
thar1

X ﬁ pile;) de; . (B5)
HH

On performing the integration over e;, Eq. (B5)
becomes

=X
Py =1 ch,/ dxldxzpk< ~ >
xpl M 6xz_ Ecie‘
Cy i=1

itk 1

X H P;(eg)dec (B6)
i#lz,

We iterate this procedure through m - 1 times.
Thus, from Eq. (Bl) we get Eq. (B2).

Furthermore, we have the following corollary:
From Eq. (B2), Eq. (B1) may be written in the
form

P/Tp)= [H | ¢ l] /‘” ar’'G(r - v")F(1'),
where

c(r,_r’)=p,,(7"7') (B8)

Cr

F(t") f dx,. . dxm_lp,<T -xg)
1

with the p;(e;) given by Eq. (11).

We consider Eq. (13), and using Eq. (B2) or
(B7) together with Eqs. (B8) and (B9), we get Eq.
(16) as the result after taking the indicated inte-
grals with

and

(X A50y)?
Vo= 4aiM Az +az(A{+23) ° (B10)
In similar fashion, we get Eq. (17) with
225 2g)2
(225 1) (B11)

=BT 4 257 -
T ag X5 +4ai g
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A model is presented for uniaxial-stress-induced alterations in the intrinsically strain-
broadened line shapes for magnetic-resonance absorption within a non-Kramers doublet for

the point-group symmetries Ds;, Cs,, and Oy.

(The term doublet is used here to denote the

|AM | =2 transition within a ground triplet.) The uniaxial stress is introduced as boundary
conditions in the model for the intrinsically strain-broadened line shapes for non-Kramers
doublets given previously. The effects of uniaxial stress are considered for the EPR where

the local site symmetry is Oy, and Dg;.

stress are considered for the paraelectric resonance absorption.

For the local symmetry Cs,, the effects of uniaxial

The model provides a

means for evaluating the strength of the spin-lattice coupling from uniaxial-stress experiments,
independent of the concentration of the paramagnetic impurity ions.

I. INTRODUCTION

Since the initial work done by Watkins and Feher,!
much interest has been devoted to the determination
of the parameters for the spin-lattice interaction for
paramagnetic impurities in diamagnetic host lattices
by introducing local crystal field perturbations using
uniaxial stress. Feher’s analysis? accounts reason-
ably well for first-order spectral shifts in the mag-
netic-resonance absorption for the Kramers ions
Mn®* and Fe®* in MgO.

When the lowest-order nonzero contribution of

local crystal field perturbations is second order, as
it is for transitions within a non-Kramers doublet, 3
the spectral effect of uniaxial stress is quite differ-
ent. Since the crystal field gives no first-order
contributions to transitions within the doublet, the
effect on the shape of the resonance line must be ex-
plicitly considered. In this paper we give a model
for the effect of uniaxial stress on the shapes of in-
trinsically strain-broadened magnetic-resonance
line shapes for transitions within a non-Kramers
doublet. 3* The model is given for the EPR for the
local site symmetries O, and D,;. The case of C,,



